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Finite Games



Two-person PerfEatilafomnatson Finite Games

* Between two players I and 11
» Zero-sum: Player I wins 1ff Player II loses and vice versa

* Both players have perfect knowledge:
* Of how the game 1s played
* Of the moves played so far

* Examples: Chess, Checkers, Tic-Tac-Toe, Reversi, Go

* Negative Examples: Backgammon, Yahtzee, Rock-Paper-Scissors,
Stratego

[Khomskii, 2010]



Finite Games

e Letn € N and A € N?™ then G(4),, is a game:
* Two players: I and II

» Take turns choosing a natural number
* Both know A the set of wins for player I (losses for player II)
* x; and y; represents the ith move by I and II respectively

* After n moves by each player the game ends:

I ‘ X0 X1 Xn-1

I1 ‘ Yo Y1 Yn-1

* S = X0YoX1YV1 - Xn—1Yn—1 18 a play of G(4),
* Player I wins iff s € A and Player [l wins iff s € A

[Khomskii, 2010]



Tic-Tac-Toe

¢

* Two players X and O.

2,

* Encode moves as 0 — 9.
* A = Legal\Wins, U Illegal,

O

2

* A" = LegalxWinsy U Illegal,
« X wins iff X wins G(A4) and G(A4’)
* 0 wins iff O wins G(A) and G(A4’)

O

e Otherwise X and O draw X|0 6 51 8

8

0 4 37209



Strategies

* Given a game, G(A4), z.:

2,

e What move should I or II make next?

* A function from partial plays to moves. o o

2

e Tic-Tac-Toe

* Strategy, o, of player X :Q“ o

* Strategy, 7, of player O

8

g(€)=0 o(04) =6 0(0463)=5 a(046357)=1 0(04635712) =8

7(0) =4 7(046) = 3 7(04635) = 7 7(0463571) = 2 7(046357128) = 9

7



Strategies

» Given a game G(4),:
* A Strategy for player I 1s a function, o:
* g:{s € Upen, N |s|iseven} - N
* A strategy for player Il 1s a function, t:
* 7:{s € Uy, N™: |s]isodd} - N
* 0 * t 1s a play where I plays with o and II plays t
* s * T 1s a play where I plays with s and II plays 7
e plays(o), ={o*xt:t € N}
e plays(t),, = {s*17:5 € N}

[Khomskii, 2010]



Winning Strategies

» Given a game G(4),:
* ¢ is a winning strategy iff plays(o),, € A
e 7 is a winning strategy iff plays(t),, € N*"\A4

Theorem: For all games, G (4), player I and II cannot
both have a winning strategy.
Proof.
Suppose not.
[ has a winning strategy o and Il a winning strategy t.
Let s = o * T be the play where I follows ¢ and II follows 7.
Necessarily s € A and s € A, a contradiction. QED



Determinacy

* A game G(A) is determined 1ff Player I or Il has a winning strategy

* There 1s at most one winner
* Is there at least one winner?

Theorem: For all finite games, G(A4),,, player I or Il must have
a winning strategy.

Proof. Player I has a winning strategy iff

AxoVYyo - AX0 1YV VYn-1-X0Y0 - Xn—1Yn-1 E A
Suppose I does not have a winning strategy:

=1(3xoVYo - IXp—1VYn-1. (X0Y0 - Xn—-1Yn-1 € 4))

IxoVYo - AXn—1VYn—1. (xOyO o Xn—1Yn-1 € A)
Player II must have a winning strategy. QED



Game Semantics



Game Semantics

* Given a sentence S € L and a model, M, of non-logical symbols:
* Define a game, G(S; M) to show if S € L
* First Order Logic:

* G(S; M) 1s a game between Myself (init. verifier) and Nature (init. falsifier)
* G(S; M) 1s played using the following rules:

RV.
R A.
R 3.
RYV.
R —.

G (S, V S,; M) verifier chooses to continue as G(Sy; M) or G(S,; M)
G(S; A S,; M) falsifier chooses to continue as G(S;; M) or G(S,; M)

G (3x.S; M) verifier chooses ¢ € do(M) and continues as G (S[c/x]; M)
G(Vx.S; M) falsifier chooses ¢ € do(M) and continues as G (S[c/x]; M)
G (—=S; M) falsifier and verifier swap roles and play G (S; M)

R atom. G(c,; M) the current verifier wins if ¢, interpreted in M is true otherwise falsifier wins

[Hintikka, 1982]



Game Semantics

* Given a sentence S € L and a model, M, of non-logical symbols:
* Define a game, G(S; M) toshowif M E S

* First Order Logic:
* G(S; M) 1s a game between Myself (init. verifier) and Nature (init. falsifier)
* G(S; M) 1s played using the following rules:
* RV, RA, R3, RV.,R . and R atom.
* M E S iff Myself wins G(S; M)

[Hintikka, 1982]



First Order Logic

M =7 U {abs, <, +,=}
S =Vx3y.abs(x) =y

Sx,y
G(S; M)
G(3y.S5_1y; M) y()y,\M)A W

-~ G1l=0;M) G(1=1,M) .. - G(O=0;M) - ~G(1=1;M) ..



First Order Logic

M =7Z U {abs, <, +,=}
S =Vx3ay.abs(x) =y

Sx,y

G(S; M)

Falsifier Chooses ¢
GAy.Scy; M)

Verifier Chooses abs(c)

G(abs(c) = abs(c); M)




Strategy Synthesis



Strategy Synthesis

* Given a game G(A):
* Can we know 1f a player has some winning strategy?
* Can we produce this strategy?

* Logical Games:
* Defined using logical formulae

* Strategy synthesis corresponds to
* Functional & Reactive Synthesis
* Adversarial Planning
* Modular Verification
* Branching-Time Verification

[Farzan & Kincaid, 2016]



Linear Arstitmbtabiban <heabdsty Games

* Given a sentence,1p sandeitlearrAxichm etineamAmiktregame, G(@):

* Two players SAT and UNSAT take turns jnsﬁantiating quantifiers

« SAT controls existentisld and Gamts'to prove @ +t|c-t

e UNSAT controfs @rifvERERUIR wamis To Qlilsf)rﬁvg LOF AG|FVG
 SAT wins a play cg ... @, i o*%y cpQnix > € EF, 3}
* If SAT has a winnipgsstraegpesicts ifqt 3aghio free variables

[Farzan & Kincaid, 2016]



Strategy Improvement

* We first compute a strategy skeleton for SAT

[Farzan & Kincaid, 2016]



Skeleton Strategy

IwVxAYWVWz. (y <1V2W<Y)A(z<yVx<2z)

|
/‘\

!

[Farzan & Kincaid, 2016]



Strategy Improvement

* We first compute a strategy skeleton for SAT
* Is this strategy winning?

[Farzan & Kincaid, 2016]



Winning Condition

IwVxAYWVWz. (y <1V2W<Y)A(z<yVx<2z)

F(w,x,y,z)

Vx(Vz. F(0,x,x,2))0 (V2. F (0, x, 2x, z))

Vx(Vz. FW, x,2x,2))

Vz.F(wW,x,x,Z) Vz.F(\Wx,2x,z)

Vz. F(vl,x, Y, Z) Vz. F(}, X,Y,Z)

[Farzan & Kincaid, 2016]



Strategy Improvement

* We first compute a strategy skeleton for SAT

* Is this strategy winning?
* Yes, return winning strategy skeleton
* No, compute UNSAT’s counter-strategy

[Farzan & Kincaid, 2016]



Counter Strategy
Wi SN Mﬂ@wﬁ@)w@)ﬁ{ﬂ{ﬂ' @‘2—“‘)@)2_2)

M={xw» -2,y > 2,2z, » —3}

S

MF={we 0}x > =2}y » =2}z =2} 0

l
T

X 2X
-F(w,x,y,2)

[Farzan & Kincaid, 2016]



Model-based Term Selection

(eq(M, x, F) if EQ(M,x,F) # @
ifUB(M,x,F) # @

1
o (ub(M,x,F) + glb(M,x,F)) ;4 LB(M.x, F) # 0

select(M,X,F) =

lub(M, x,F) — 1 if UB(M,x,F) # @
glb(M,x,F) + 1 if LB(M,x,F) # @
L0 otherwise

EQWM,x,F) ={s:x =s € E A[x]" = [s]"}
UBM,x,F) ={s:x <s€FEA[x]" < [s]"}
UB(M,x,F)={s:s>x€FE,A[s]" < [x]"}

Properties of select
MEeF =M E Flselect(M,x, F)/x]
{select(M,x,F): M E F} is finite



Counter Strategy

—winissat iff IM.M & —F (0,5,&,@) A —=F (0, X, 2X, Z_z)

M={xw» -2,y > 2,2z, » —3}

3
U -F(0,-1,-1,-1)A=F (0,—1,—2,—§> = true

3
M™ = (v - 0}x b —2}y - —2}z - —3} @ —F(w,—1,—1,—1)A—F (w, _1,-2, ——)

2
l 3x

A/—‘\—IFEW, X, X, X)\ —~F (w, X,2x, 7)
xX+y

-F(w,x,y,y) @ & —F (W, X,, )

2
xly

-F(w,x,Vy,2) - F (w?x, Y, Z)

[Farzan & Kincaid, 2016]



Strategy Improvement

* We first compute a strategy skeleton for SAT

* Is this strategy winning?
* Yes, return winning strategy skeleton
* No, compute UNSAT’s counter-strategy, trade roles, and repeat

[Farzan & Kincaid, 2016]



Winning Strategy Skeleton

AIwVxIAyVz. (y<1V2W<y)A(z<yVx < 2z)

S
|

N

x+1 x+ 2
: I

[Farzan & Kincaid, 2016]




Strategy Synthesis

* A winning strategy skeleton 1sn’t a strategy:
* Some strategy conforming skeleton, S, 1s winning
* Can we compute a winning strategy from S? YES

* Label skeleton node’s with deterministic guards

S
0
* Computed using Tree Interpolants
* Interpolants represent plays reaching a node where UNSAT may win

x+1 X+ 2

i i

[Farzan & Kincaid, 2018]



Tree Interpolation

AIwVxIAyVz. (y<1V2W<y)A(z<yVx < 2z)

F(w, xTy, Z)
S
0 ®(ny) = faise
Bfm) ) —=ltgue x +1 x+2 d(n,) = folse

2
D (N 1 E %B%,l—x—%zés_@ i i @(ng) EﬁaEe(@@O_cW&ZSZ_Q <x+2



o(e) =0
olwx) =x+2

Strategy Synthesis

AIwVxIAyVz. (y<1V2W<y)A(z<yVx < 2z)

a'(e) =0

or x+1 or ...

o' (wx) = if x < 1 then

S
else x + 2 0
: l




Infinite Games



Infinite Games

 Given A € NV, G(A) is an infinite game:
* Two players: I and II

* Take turns choosing a natural number (forever)
* Both know A the set of wins for player I (losses for player II)
* x; and y; represents the ith move by I and II respectively

| ‘ X0 X1 Xi

11 ‘ Yo Y1 Yi

*S =XoYoX1V1 .- 1S a play OfG(A)
* Player I wins iff s € A and Player Il wins iff s € A

[Khomskii, 2010]



Strategies

* Given an infinite game G (A4):
* A Strategy for player I 1s a function, o:
e 0:{s € N": |s|iseven} » N
* A strategy for player Il 1s a function, t:
e 7:{s € N*: |s|isodd} - N
* 0 * t 1s a play where I plays with o and II plays t
* s * T 1s a play where I plays with s and II plays 7
 plays(c) ={o *t: t € NN}
e plays(r) = {s*t: s € NN}

[Khomskii, 2010]



Winning Strategies

* Given a game G(A):
* 0 is a winning strategy iff plays(cg) € A
* 7 is a winning strategy iff plays(t) € NM\4

Theorem: For all games, G (4), player I and II cannot
both have a winning strategy.
Proof.
Suppose not.
[ has a winning strategy o and Il a winning strategy t.
Let s = o * T be the play where I follows ¢ and II follows 7.
Necessarily s € A and s € A, a contradiction. QED



Determinacy

* A game G(A) is determined 1ff Player I or Il has a winning strategy

* There 1s at most one winner
* Is there at least one winner?

Theorem: There exists an infinite game that is not determined.

* Finitely decided games:
* G(A) is finitely decided iff Vs € A.3In.{s":Vi < n.s; =s;} € A

Theorem: All finitely decided games are determined.

[Khomskii, 2010]



Strategy Synthesis
(for infinite games)



Reachability Games

* G(init,reach,safe) 1s an infinite game:
» Two players REACH and SAFE alternate picking Q¢ positions
* REACH starts by picking 7y satisfying init
* SAFE moves from REACH’s choice, 7;, to any state s; satisfying safe(r;, s;)
« REACH then continues play choosing 7;,4 satisfying reach(s;, 7j41)
* The first player to make an 1llegal move loses.
* SAFE wins all games where both players only make legal moves.
* The game 1s determined
* Deciding which player wins 1s undecidable

[Farzan & Kincaid, 2018]



Strategy Synthesis

* Key Idea: use bounded games to produce satisfiability games.
Ax1Vyq ... 3x,Vy,,. init(xq) A safe(xq,y;) = unroll(1,n — 1)
unroll(k,0) & false
unroll(k,d) & reach(yy, Xx+1) N (safe(xXg41, Vie+1) = unroll(k + 1,d — 1))
* [f REACH (SAT) wins the bounded game

 REACH wins the unbounded game
* Any extension of the finite strategy is a winning strategy

* [f SAFE (UNSAT) wins the bounded game

« Attempt to generalize strategy to infinite games

[Farzan & Kincaid, 2018]



Cinderella-Stepmother Game

* Two players Cinderella and her Stepmother.

* Each round
* Stepmother adds 1L of water to a buckets (3L capacity)
* Cinderella can empty two adjacent buckets

* Cinderella wins if no bucket overflows

[Farzan & Kincaid, 2018]

40



Safety Tree

nq: b < 3,3,1,1,1 N (bg + bs) <1

|
true : (0;01 b3)b4l b5)
4

ns: b < 3,3,2,2,2 N (bg + bs) <2

|
true : (0;01 b3)b4l b5)
4

ns: b < 1,1,3,3,3 AN (bg + b5) <3
|

true : (0,0, b3, by, bs)
, 4

na:b < 1,1,4,4,4 A (bs + bg) < 4 x

[Farzan & Kincaid, 2018]

41



Cinderella-Stepmother Game

[Farzan & Kincaid, 2018]

Cinderella’s Strategy
Always empty b, and b,

Round 2:
Stepmother fills b

42



Refine Safety Tree

nq: b < 3,3,1,1,1 N (bg + bs) <1

|
true : (0;01 b3)b4l b5)
4

ns: b < 3,3,2,2,2 N (bg + bs) <2

|
true : (0;01 b3)b4l b5)
4

ns: b < 1,1,3,3,3 AN (bg + b5) <3

—
b5 <2: (bl,bz,0,0, b5>
—

nab <33,1,1,3

|
true : (0,0, b3, by, bs)
L 4

Neg: b < 1,1,2,2,4 N (bg + b5) <4

X

—_
b3 <2: (bl, bz,bg,0,0)
~

ne: b < 2,2,3,3,1
I

true : (0,0, b3, by, bs)
4

n,;:b <1,1,4,22A (bs + be) < 4

43



Cinderella-Stepmother Game

Cinderella’s Strategy
Empty b; and b, always but rd 3
Rd 3 empty b5 if full else bg

Round #:
Stepmother fills by

[Farzan & Kincaid, 2018] 44



Refine Safety Tree

nq: b < 3,3,1,1,1 N (bg + bs) <1
|
true : (0;01 b3)b4l b5)
4

ns: b < 3,3,2,2,2 N (bg + b5) <2
|
true : (0;01 b3)b4l b5)
4

ns: b < 1,1,3,3,3 AN (bg + b5) <3

— % <
bs‘S/Z‘ (b1, b2, 0,0, bs) i bs <2: {by, bz,&;0,0)
Nng:b < %,2,1,3,3 E ng:b < I2,2,3,3,1
true : (blibz,bg,0,0) ! true : <b1*; b,,0,0, bs)
ng:b <3,3,2,2,2A (bs + bs) < 2 E nzib < 3,3,2,2,2/\ (b3 + bs) <2
true : (O,OI, b3, by, bs) : true : (0;(} b3, by, bs)
ng:b < 1,1,3,3,3+/\ (b + bs) <3 _——")\‘“—- ng:b <1,1,3,3,3A (b3 + bs) < 3

[Farzan & Kincaid, 2018]



Conclusion

* Finite Games
* Game Semantics
* Connection between quantification and choices
* Satisfiability Games
 Strategy Improvement & Strategy Synthesis

* Infinite Games
* Reachability Games
 Strategy Synthesis by generalizing bounded game strategies
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